Telomeric aging: mitotic clock or stress indicator?

نویسندگان

  • Alexander K. Koliada
  • Dmitry S. Krasnenkov
  • Alexander M. Vaiserman
چکیده

Citation: Koliada AK, Krasnenkov DS and Vaiserman AM (2015) Telomeric aging: mitotic clock or stress indicator? Front. Genet. 6:82. Telomeres are regions of tandem arrays of TTAGGG repeats and associated proteins located at chromosomal ends that allow cells to distinguish chromosome ends from double-strand breaks and protect chromosomes from end-to-end fusion, recombination, and degradation (Houben et al., 2008). Telomeres are not linear structures, telomeric DNA is maintained in a loop structure due to many key proteins. This structure serves to protect the ends of chromosomes (Neidle and Parkin-son, 2003). Telomeres are subjected to shortening at each cycle of cell division due to incomplete synthesis of the lagging strand during DNA replication owing to the inability of DNA polymerase to completely replicate the ends of chromosome DNA (" end-replication problem ") (Muraki et al., 2012). Therefore, they assume to limit the number of cell cycles and act as a " mitotic clock " (Olovnikov, 1996). Shortened telomeres cause decreased proliferative potential, thus triggering senescence (Blackburn et al., 2006). Telomere length (TL) is highly heterogeneous in somatic cells, but generally decreases with age in proliferating tissues thereby constituting a barrier to tumorigenesis but also contributing to age-related loss of stem cells. Repair of critically short (" uncapped ") telomeres by telomerase enzyme, which elongates chromosomal ends by synthesizing new telomeric repeats, is limited in somatic cells, and cellular senescence, apoptosis and/or a permanent cell cycle arrest in G1 phase are triggered by a critical accumulation of uncapped telomeres (D'Souza et al., 2013). Telomerase maintains TL by adding telomeric DNA repeats to chromosome ends in prenatal tissues, gametes, stem cells, and cancerous cells. In proliferative somatic cells, it is usually inactive or expressed at levels that are not high enough to maintain the stable TL (Hiyama and Hiyama, 2007). Alternative lengthening of telomeres (ALT) pathway is a recombination-mediated process, which can increase telomere length by thousands of base-pairs within a few somatic cell cycles (Liu et al., 2007). Telomere-initiated cellular senescence is a mechanism of eliminating cells with damaged DNA and protection against cancerogenesis (through the activation mechanisms of cell cycle arrest or double-strand breaks-induced apoptosis), but it may also impair the cell function contributing to degenerative organ failure and organismal aging (Chen et al., 2007; Campisi, 2013). Cellular senes-cence (a state of irreversible cell cycle arrest) occurring in response to a telomere shortening may be regulated by immune surveillance. In this process, …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تئوری‌های بیوشیمیایی و ژنتیکی فرایند پیری

Aging is the outcome of the progressive accumulation of different alterations in the body which accompanied with gradual decrease of the efficiencies of normal physiological functions and the capacity to maintain homeostasis that lead to the increase in disease probability and the death of people. The researchers have done different experiments especially on animal models for the perception of ...

متن کامل

Bioenergetics Aging Clock

The theory of replicative senescence is based on the doubtless fact that cells of higher eukaryotes enter a non-dividing but viable state after a certain number of duplications, called the Hayflick limit. It is assumed that the accumulation of non-dividing cells in tissues leads finally to organism degradation [1], which is the leading cause of aging. The mechanism is that the ends of eukaryoti...

متن کامل

Telomeres: influencing the rate of aging.

Evidence is reviewed that suggests a central role for telomeres in one major model of biological aging, namely, proliferative senescence. Telomeric shortening with each cell division does not only act as a biological clock, but appears to trigger the ultimate loss of proliferative ability via activation of the p53-dependent check point system. Oxidative stress induces single-stranded damage in ...

متن کامل

Deciphering the role of Nuclear Factor-κB in cellular senescence

Cellular senescence is a program of irreversible cell cycle arrest that cells undergo in response to a variety of intrinsic and extrinsic stimuli including progressive shortening of telomeres, changes in telomeric structure or other forms of genotoxic and non-genotoxic stress. The role of nuclear factor-κB in cellular senescence is controversial, as it has been associated with both proliferatio...

متن کامل

Telomere Length and Aging

Telomeres, the TTAGGG tandem repeats at the ends of chromosomes, become progressively shortened with each replication of cultured human somatic cells (reviewed in Wong and Collins (Wong & Collins 2003)) until a critical length is achieved, at which point the cell enters replicative senescence. This situation can be reversed by the enzyme named telomerase that is responsible for Telomere Length ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015